Cryptography and Network Security Chapter 2

Fourth Edition by William Stallings

Lecture slides by Lawrie Brown

Symmetric Encryption

> or conventional / private-key / single-key
> sender and recipient share a common key
$>$ all classical encryption algorithms are private-key
$>$ was only type prior to invention of publickey in 1970's
> and by far most widely used

Some Basic Terminology

> plaintext-original message
> ciphertext - coded message
> cipher - algorithm for transforming plaintext to ciphertext
$>$ key - info used in cipher, known only to sender/receiver
> encipher (encrypt) - converting plaintext to ciphertext
> decipher (decrypt) - recovering ciphertext from plaintext
$>$ cryptography - study of encryption principles/methods
> cryptanalysis (codebreaking) - study of principles/ methods of deciphering ciphertext without knowing key
> cryptology - field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

$>$ two requirements for secure use of symmetric encryption:

- a strong encryption algorithm
- a secret key known only to sender / receiver
$>$ mathematically have:

$$
\begin{aligned}
& Y=\mathrm{E}_{K}(X) \\
& X=\mathrm{D}_{K}(Y)
\end{aligned}
$$

> assume encryption algorithm is known
> implies a secure channel to distribute key

Cryptography

> characterize cryptographic system by:

- type of encryption operations used
- substitution / transposition / product
- number of keys used
- single-key or private / two-key or public
- way in which plaintext is processed
- block / stream

Cryptanalysis

> objective to recover key not just message > general approaches:

- cryptanalytic attack
- brute-force attack

Model of Symmetric Cryptosystem

Cryptanalytic Attacks

ciphertext only

- only know algorithm \& ciphertext, is statistical, know or can identify plaintext
> known plaintext
- know/suspect plaintext \& ciphertext
chosen plaintext
- select plaintext and obtain ciphertext
$>$ chosen ciphertext
- select ciphertext and obtain plaintext
chosen text
- select plaintext or ciphertext to en/decrypt

More Definitions

> unconditional security

- no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext
> computational security
- given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

> always possible to simply try every key
> most basic attack, proportional to key size
> assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/ $\mu \mathrm{s}$	Time required at 10^{6} decryptions/ $\mu \mathrm{s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s} \quad=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s} \quad=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s} \quad=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

Classical Substitution Ciphers

> where letters of plaintext are replaced by other letters or by numbers or symbols
$>$ or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

> earliest known substitution cipher
> by Julius Caesar
$>$ first attested use in military affairs
> replaces each letter by 3rd letter on
> example: meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

Caesar Cipher

> can define transformation as:
abcdefghijkImnopqrstuvwxyz DEFGHIJKLMNOPQRSTUVWXYZABC
> mathematically give each letter a number
abcdefghijklm nopqrstuvwxyz
012345678910111213141516171819202122232425
> then have Caesar cipher as:

$$
\begin{aligned}
& c=\mathrm{E}(p)=(p+k) \bmod (26) \\
& p=\mathrm{D}(\mathrm{c})=(\mathrm{c}-k) \bmod (26)
\end{aligned}
$$

Cryptanalysis of Caesar Cipher

> only have 26 possible ciphers

- A maps to A,B,..Z
$>$ could simply try each in turn
> a brute force search
> given ciphertext, just try all shifts of letters
$>$ do need to recognize when have plaintext
> eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

rather than just shifting the alphabet
$>$ could shuffle (jumble) the letters arbitrarily
$>$ each plaintext letter maps to a different random ciphertext letter
> hence key is 26 letters long
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

$>$ now have a total of $26!=4 \times 1026$ keys
$>$ with so many keys, might think is secure
> but would be !!!WRONG!!!
$>$ problem is language characteristics

Language Redundancy and Cryptanalysis

> human languages are redundant
$>$ eg "th Ird s m shphrd shll nt wnt"
$>$ letters are not equally commonly used
$>$ in English E is by far the most common letter

- followed by T,R,N,I,O,A,S
> other letters like Z,J,K,Q,X are fairly rare
> have tables of single, double \& triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

> key concept - monoalphabetic substitution ciphers do not change relative letter frequencies
$>$ discovered by Arabian scientists in $9^{\text {th }}$ century
> calculate letter frequencies for ciphertext
> for monoalphabetic must identify each letter

- tables of common double/triple letters help

Example Cryptanalysis

given ciphertext:
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZS ZUFPOMBZWPFUP ZHMDJUDTMOHMQ
$>$ count relative letter frequencies (see text)
$>$ guess P \& Z are e and t
$>$ guess $Z W$ is th and hence $Z W P$ is the
> proceeding with trial and error finally get:
it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Playfair Cipher

$>$ not even the large number of keys in a monoalphabetic cipher provides security
> one approach to improving security was to encrypt multiple letters
> the Playfair Cipher is an example
> invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

> a 5×5 matrix of letters based on a keyword
$>$ fill in letters of keyword (sans duplicates)
$>$ fill rest of matrix with other letters
$>$ eg. using the keyword MONARCHY

M	O	N	A	R
C	H	Y	B	D
E	F	G	I/J	K
L	P	Q	S	T
U	V	W	X	Z

Encrypting and Decrypting

> plaintext is encrypted two letters at a time

1. if a pair is a repeated letter, insert filler like ' X '
2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

P L	A	Y F	DE
I R	E		
B C	D	G H	
K N	Ő	Q 5	
T U	v	W z	OD

$\begin{array}{lllll} \mathbf{P} & \mathbf{L} & \mathbf{A} & \mathbf{Y} & \mathbf{F} \\ \mathbf{I} & \mathbf{R} & \mathbf{E} & \mathbf{X} & \mathbf{M} \end{array}$	TH
$B-C D G-H$	$\xrightarrow[\substack{\text { Shape } \\ \text { Rule } \\ \text { Rue }}]{\text { piect }}$
$\begin{array}{lllll} \mathbf{K} & \mathbf{N} & \mathbf{O} & \mathbf{Q} & \mathbf{S} \\ \boldsymbol{T} & \mathbf{U} & \mathbf{V} & \mathbf{W} & \mathbf{Z} \end{array}$	ZB

\mathbf{P}	$\mathbf{L}-\mathbf{A}$	\mathbf{Y}	\mathbf{F}
\mathbf{I}	\mathbf{R}	\mathbf{E}	\mathbf{X}
\mathbf{B}			
\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{G}
\mathbf{K}	\mathbf{H}		
\mathbf{K}	$\mathbf{N}-\mathbf{O}$	\mathbf{Q}	\mathbf{S}
\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}
\mathbf{Z}			

OL

Shape: Rectangle Rule: Pick Same Rows, Opposite Corners

NA

\mathbf{P}	\mathbf{L}	\mathbf{A}	\mathbf{Y}	\mathbf{F}
\mathbf{I}	\mathbf{R}	$\mathbf{E}>\mathbf{X}>\mathbf{M}$		
\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{G}	\mathbf{H}

Shape: Row
B C E G Rule: Pick Items to Right of Each
K NOQ S
T U V W Z
Letter, Wrap to Left if Needed

XM

Example

"I see you there" IF odd Add Q

R	P	M	L	D
S	A	X	$I /$	C
H	K	Q	U	Y
E	W	O	Z	G
B	F	T	V	N

Answer

- is ee yo ut he re
$>$ is ex ey ou th er eq
> CA OS GH ZQ BQ BS OH

R	P	M	L	D
S	A	X	I / J	C
H	K	Q	U	Y
E	W	O	Z	G
B	F	T	V	N

Security of Playfair Cipher

security much improved over monoalphabetic
> and correspondingly more ciphertext
$>$ was widely used for many years

- eg. by US \& British military in WW1
$>$ it can be broken, given a few hundred letters
> since still has much of plaintext structure

Polyalphabetic Ciphers

polyalphabetic substitution ciphers
> improve security using multiple cipher alphabets
> make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
> use a key to select which alphabet is used for each letter of the message
> use each alphabet in turn
> repeat from start after end of key is reached

Vigenère Cipher

> simplest polyalphabetic substitution cipher
> effectively multiple caesar ciphers
$>$ key is multiple letters long $\mathrm{K}=\mathrm{k}_{1} \mathrm{k}_{2} \ldots \mathrm{k}_{\mathrm{d}}$
$>\mathrm{i}^{\text {th }}$ letter specifies $\mathrm{i}^{\text {th }}$ alphabet to use
> repeat from start after d letters in message
> decryption simply works in reverse

The Modern Vigenère Table

Example of Vigenère Cipher

write the plaintext out
> write the keyword repeated above it
> use each key letter as a caesar cipher key
> encrypt the corresponding plaintext letter
> eg using keyword deceptive
key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security of Vigenère Ciphers

$>$ have multiple ciphertext letters for each plaintext letter
> hence letter frequencies are obscured
> but not totally lost
> start with a letter frequencies

- see if look monoalphabetic
$>$ if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

> method developed by Babbage / Kasiski
> repetitions in ciphertext give clues to period
> so find same plaintext an exact period apart
> which results in the same ciphertext
$>$ of course, could also be random fluke
$>$ eg repeated "VTW" in previous example
$>$ suggests size of 3 or 9
$>$ then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

> ideally want a key as long as the message
> Vigenère proposed the autokey cipher
> with keyword is prefixed to message as key
> knowing keyword can recover the first few letters
$>$ use these in turn on the rest of the message
> eg. given key deceptive
key: deceptivewearediscoveredsav plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

One-Time Pad

> if a random key as long as the message is used, the cipher will be secure
> called a One-Time pad
$>$ is unbreakable since ciphertext bears no statistical relationship to the plaintext
> since for any plaintext \& any ciphertext there exists a key mapping one to other
$>$ can only use the key once though
> problems in generation \& safe distribution of key

Transposition Ciphers

now consider classical transposition or permutation ciphers
$>$ these hide the message by rearranging the letter order
> without altering the actual letters used
$>$ can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

> write message letters out diagonally over a number of rows
> then read off cipher row by row
$>$ eg. write message out as:

```
memat a r t g p r y
    etefe eteo a a t
```

$>$ giving ciphertext
MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

a more complex transposition
$>$ write letters of message out in rows over a specified number of columns
$>$ then reorder the columns according to some key before reading off the rows
Key: 4312567
Plaintext: a † † a ckp
ostpone
duntilt
woamxyz
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

> ciphers using substitutions or transpositions are not secure because of language characteristics
> hence consider using several ciphers in succession to make harder, but:

- two substitutions make a more complex substitution
- two transpositions make more complex transposition
- but a substitution followed by a transposition makes a new much harder cipher
$>$ this is bridge from classical to modern ciphers

Rotor Machines

> before modern ciphers, rotor machines were most common complex ciphers in use
> widely used in WW2

- German Enigma, Allied Hagelin, Japanese Purple
> implemented a very complex, varying substitution cipher
$>$ used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
> with 3 cylinders have $26^{3}=17576$ alphabets

Rotor Machine Principles

Hagelin Rotor Machine

Steganography

> an alternative to encryption
> hides existence of message

- using only a subset of letters/words in a longer message marked in some way
- using invisible ink
- hiding in LSB in graphic image or sound file
> has drawbacks
- high overhead to hide relatively few info bits

Summary

> have considered:

- classical cipher techniques and terminology
- monoalphabetic substitution ciphers
- cryptanalysis using letter frequencies
- Playfair cipher
- polyalphabetic ciphers
- transposition ciphers
- product ciphers and rotor machines
- stenography

